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ABSTRACT 

Over the past decade, retirement systems have undergone significant 

changes shifting from employer-sponsored pension plans to defined contribution 

plans, commonly referred to as 401(k) or individual retirement accounts (IRA).  A 

critical aspect of these plans is that the individual, as opposed to the employer, is 

responsible for managing the account and its associated investments.   

Demographic data indicates that the proportion of the American population 

older than 55 is projected to increase considerably through 2050.  In the very 

near future, millions of Americans will require sound advice regarding myriad 

retirement financial decisions.  

Retirement strategies currently employed by financial planners are based 

on rules of thumb and have been shown to be inefficient and poorly matched with 

retiree preference.  This thesis demonstrates feasibility of applying inverse 

optimization and utility maximization as a means of developing efficient 

retirement portfolios based on individual investment preferences.  

We administer a survey to collect investment preference data.  Next, we 

implement a habit formation utility model and develop a bi-level inverse 

optimization technique to quantify, estimate and parameterize retiree preference.  

Using our estimate, we generate preference-based optimal investment portfolios. 
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EXECUTIVE SUMMARY 

 Over the past decade, retirement systems have undergone significant 

changes.  The predominant retirement system in the United States has now 

shifted from employer-sponsored pension plans to defined contribution plans, 

commonly referred to as 401(k) or individual retirement accounts (IRA).  A critical 

aspect of such plans is that the individual, as opposed to the employer, is 

responsible for managing the account and its associated investments.   

 Demographic data indicates that the proportion of the American population 

older than 55 is projected to increase considerably through 2050.  In the very 

near future, millions of Americans will require sound advice regarding myriad 

retirement financial decisions.  

 Retirement strategies currently employed by financial planners are based 

on rules of thumb and have been shown to be inefficient and poorly matched with 

retiree preference.  This thesis demonstrates feasibility of applying inverse 

optimization and utility maximization as a means of developing efficient 

retirement portfolios based on individual investment preferences.  

 We administer a survey to collect investment preference data for time 

preference, habit formation and risk aversion.  Next, we implement a habit 

formation utility model and develop a bi-level inverse optimization technique to 

quantify, estimate and parameterize retiree preference.  We then use our 

estimate to generate preference-based optimal investment portfolios. 

 Our analysis reveals an unexpected result, namely a respondent 

preference for “negative” habit formation (a desire to have more consumption 

following a down market and lower consumption state and less consumption 

following an up market and higher consumption state).  Specifying the reason for 

this behavior warrants further research, which could lead to the development of 

new utility maximization models.  This, in turn enables the development of 

efficient retirement financial plans that are more closely matched to the needs of 

our burgeoning retiree population.  
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I. INTRODUCTION  

A. BACKGROUND 

 Changes in demographics and retirement systems are having significant 

effects on the financial economics of retirement spending and investing (Sharpe 

2006).  Until a decade ago, the traditional source of retirement income was 

derived from defined benefit plans, commonly known as employer-sponsored 

pension plans.  Defined benefit plans provide beneficiaries a fixed or inflation-

adjusted source of retirement income for as long as the retiree lives.  Payouts for 

defined benefit plans are specified (devoid of uncertainty) and the management 

of investment strategies to produce those payouts rest with the employer, not 

with the retiree.  

 Over the course of the last eleven years, the predominant retirement 

system in the private sector of the United States has shifted from defined benefit 

plans to defined contribution plans, commonly referred to as 401(k) and IRA 

(individual retirement) accounts.  According to the Employee Benefit Research 

Institute (EBRI), 1997 was the crossover year for defined contribution dominance 

(EBRI 2006).  The ratio between plans has grown wider since.  Defined 

contribution plans are managed by the retiree and subject to the uncertainty 

inherent in the financial markets and the economy as a whole.   

 Data from the U.S. Census Bureau indicates that the proportion of the 

American population older than 55 is projected to increase significantly through 

2050.  Sharpe (2006) refers to this phenomenon as the “graying of the 

population” and highlights the fact that the trend is worldwide and not limited 

solely to America.  By 2050, the ratio of elderly to working age people is 

estimated to be 50 elderly for every 100 workers in developed countries and 27 

for every 100 in less developed countries.  This is an astonishing increase from 

the present day where the ratio stands at 20 to 100 workers in America, 9 in 

India, 12 in China, 29 in Western Europe and 31 in Japan (Sharpe 2006).  
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 Coupling these realities it becomes clear that in the very near future 

millions of retirees will face myriad complex financial decisions.  Importantly, this 

burgeoning group of the world’s population will require advice and assistance in 

developing efficient retirement plans.   

B. RESEARCH GOAL 

 Typical retirement strategies employed by financial planners draw 

primarily upon rules of thumb, which have been shown by Scott, Sharpe & 

Watson (2008) to be both inefficient and poorly matched with retiree preference.  

Johnson (2009) demonstrates that such portfolios often fail to meet retirement 

financial needs.  Incongruity of this kind leads to dissatisfaction with retirement 

financial plans.   

 Sharpe (1970) shows that happiness gained from consumption generated 

by a given investment portfolio is directly related to the portfolio’s expected utility 

(here utility is used in the traditional economic sense – satisfaction gained from 

consumption).  Sharpe (2006) explores utility maximization as an effective way to 

approach retirement investment planning and shows that maximizing a portfolio’s 

expected utility is equivalent to maximizing retiree happiness.  In order to 

maximize utility (happiness) we must know and be able to quantify an individual’s 

personal investment preferences.  Additionally, we must ensure that an 

appropriate utility function is used in the maximization model (in this context we 

interpret utility function as a model capable of capturing retiree preferences).   

 This thesis serves as a first step towards the ultimate goal of developing 

optimal retirement investment portfolios whose composition is based on retiree 

preference.  We collect data about retiree preferences, analyze the data and 

develop methods to quantify, estimate and represent preferences with utility 

function parameters.  We employ a utility function proposed by Watson (2008) as 

the underlying model.  Watson’s model incorporates preferences associated with 

risk aversion, time discount and habit formation (the extent to which happiness 

derived from consumption today depends on consumption in the past).  Based on 

the data collected, we examine the model’s ability to adequately represent 
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individuals’ preferences.  We then utilize analytical and numerical estimation 

techniques to fit data to the model and develop sample corresponding efficient 

portfolios. 

C. LITERATURE REVIEW 

 The “4% rule” is a widely used retirement investment strategy that requires 

a retiree to spend 4% of current wealth each year.  The retiree’s investment 

portfolio is then rebalanced on a yearly basis to some specified mix of stocks and 

bonds.  Sharpe, Scott & Watson (2007) illustrate that the 4% rule, and other such 

industry-accepted rules of thumb, are inconsistent with expected utility 

maximization as they are costly to maintain and subject the retiree to avoidable 

uncompensated non-market risk.  In other words, these rules of thumb do not 

adequately provide for an appropriate set of personalized decisions regarding 

spending and investing in retirement.  Johnson (2009) illustrates that the ability of 

this type of plan to fund retiree consumption over the span of a 30-year 

retirement is highly sensitive to market performance.  In many cases, the retiree 

can be left with no income in the latter years of retirement – a highly undesirable 

situation. 

 Frederick, Lowenstein & O’Donoghue (2002) develop the concept of 

discounted utility in terms of intertemporal choice, defined as decisions involving 

tradeoffs among costs and benefits occurring at different times.  They further 

state that economists interpret intertemporal choice as the joint product of many 

psychological motives.  Importantly, they highlight the central characteristic of the 

discounted utility model as the ability to capture these disparate motives as 

single parameters.   

 In the vein of developing a better retirement investment planning tool, 

Sharpe (2006) introduces utility maximization as a more effective tool for pairing 

retiree preferences with investment strategies.  This construct implies that a 

strategy must account not only for the financial instruments that compose a 

portfolio, but also for the specific amounts a retiree desires to spend, when he or 
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she desires to spend it, and the circumstances that drive those decisions.  

Sharpe (2006) further illustrates this point with the following example. 

How does a retiree think about taking risk that will affect his income 
ten years from now?  Suppose he can have $100,000 for certain or 
a 50/50 chance of getting either $80,000 or $150,000.  Which will 
he choose?  If he knew that he would be alive and well ten years 
from now he may choose the gamble.  However, if he knew that he 
would be sick and in a nursing home and that the cost associated 
with assisted care was $100,000 he would very likely turn down the 
gamble and take the sure thing.   

 Similar considerations apply to decisions involving the uncertainty of 

market conditions.  Utility for any given individual may well be state-dependent, 

where states include personal circumstances such as those highlighted in the 

example.  Sharpe (2006) defines the optimal retirement financial plan as follows:  

given an investable wealth, the optimal plan selects spending that maximizes 

individual happiness or expected utility.  Johnson (2009) defines and solves such 

a retirement investment utility maximization problem.   

 Critical to the ability to develop efficient retirement financial plans is the 

ability to obtain valid information about a retiree’s preferences (utility).  If these 

preferences can be quantified and parameterized, retirement financial plans can 

be individually tailored to produce optimal consumption.  Johnson (2009) 

provides a planning tool called Maximum Utility Retirement Program (MURP).  

MURP takes as input a retiree’s preference parameters and gives as output the 

corresponding optimal spending plan.  Importantly, the results of MURP 

correspond singularly to the preference parameters used as input.  If the input 

parameters do not accurately describe a retiree’s motives and desires, the output 

produced by MURP will not be optimal for that particular retiree.  This result 

underscores the criticality of correctly estimating retiree preference – the central 

theme of this thesis. 
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II.  MODEL AND SURVEY DEVELOPMENT 

A.  INVESTMENT MARKET 

 We assume a market economy that is represented by a binomial model.  

The investment market is composed of two securities, a risk-free asset (bond) 

and a volatile asset (stock).  All returns are in real (constant purchasing power) 

terms. Bonds return a given percent per year (we use 2% per year denoted as 

fR ).  Each year the market can be in one of two states, either up or down.  If the 

market goes up the stock returns a given percent, and if the market goes down 

the stock returns a given negative percent (we use 18% and -6%, denoted as uR  

and dR  respectively).  Up markets and down markets are equally likely.  

 The market evolves over time as shown in Figure 1.  With regards to our 

model and experiment we use the terms “income” and “consumption” 

interchangeably.  Each node of the tree represents consumption that depends on 

time t and state s.  A state represents a particular market condition that may 

occur as we describe below.  Time 0t =  is considered the first year in retirement.  

At 0t =  the retiree subtracts his consumption for the current year and invests his 

remaining wealth to generate consumption for T future years.  Consumption 

denoted by 1,1C−  is known as the “spending anchor” and represents consumption 

in the year before retirement.  All other consumption, denoted by ,t sC , occurs if 

and only if state s in time t  is realized.  We use node 2,2C  as an example to show 

how consumption depends on a path derived by time and state.  Consumption 

2,2C  is received in retirement year 3 ( 2t = ) if and only if the market goes up 

during retirement year 1 and down during retirement year 2, see Figure 1.  

Consumption received along this path would include 0,1C  in year 1 of retirement, 

1,1C  in year 2 of retirement (after an up market during year 1) and finally 2,2C  in 

year 3 of retirement (after a down market in year 2 of retirement).   
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Figure 1.   Retirement Consumption Tree  

B. SIMPLISTIC INVESTMENT MARKET (SIM) 

 We restrict our binomial model experiment to the first three years of 

retirement.  We call the collection of all possible states that can occur in these 

three years the “simplistic investment market” (SIM).  Figure 2 provides a 

graphical representation of SIM.  Market securities and respective returns remain 

as presented in Section A.  In the general investment market (shown above in 

Figure 1) we use a number system to identify state consumption, e.g., 2,2C .  For 

simplicity and clarity, in SIM we identify state consumption with a letter system, 

e.g., udC .  The subscripts on consumption are denoted as follows: “u” if the 

market goes up, “d” if the market goes down after the first year, “uu” if the market 

goes up in year 1 and goes up again in year 2, “ud” if the market goes up in year 
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1 and down in year 2, “du” if the market goes down in year 1 and up in year 2 

and “dd” if the market goes down in year 1 and down again in year 2. 

 SIM investments are made at 0t =  and generate consumption for years 

two and three of retirement.  After the first year of investing in SIM, consumption 

will follow a path to one of two possible states, either “u” or “d.”  After two years 

of investing in SIM, consumption will follow a unique path to one of four possible 

states, “uu,” ”ud,” ”du” or “dd.” 

After First Year
2 possibilities

After Second Year
4 possibilities

Market Up
Market Up, Up

Market Down
Market Down, Down

Market Down, Up

Market Up, Down

(Cu)

(Cd)

(Cuu)

(Cud)

(Cdu)

(Cdd)

Now

(CNow)

 

Figure 2.   Simplistic Investment Market (SIM) 

C. MARKET PRICES AND PROBABILITIES 

Associated with each state of SIM is a price paid upon retirement (t = 0) for 

the future return of $1 if the respective state is realized.  Table 1 summarizes the 

prices for each state of SIM using the returns given in Chapter II, Section A.  

Taking the state “uu” as an example, we see that for every $0.11 invested upon 

retirement, the retiree receives $1 in two years time if and only if the market goes 

up in year 1 of retirement and up again in year 2 of retirement. 
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Sharpe, Scott & Watson (2007) use standard arbitrage techniques to 

compute the prices shown in Table 1.  In general, it costs more to generate 

consumption in down markets than it does in up markets. Also, notice that the 

prices for the states “ud” and “du” are identical.  Due to equal pricing, we can 

consider “ud” and “du” as identical states; however, the path to arrive at each 

state remains unique.  More will be said about the significance of equal pricing 

for these two states in Chapter III. Probabilities are based on the binomial model 

under the condition that up and down markets are equally likely.  

 

Market State 
Now 

(t = 0) 

“u” 

(t = 1) 

“d” 

(t = 1) 

“uu” 

(t = 2) 

“ud” 

(t = 2) 

“du” 

(t = 2) 

“dd” 

(t = 2) 

Current price 
for $1 of future 
consumption 

$1 $0.33 $0.65 $0.11 $0.21 $0.21 $0.43 

Probability 1 0.5 0.5 0.25 0.25 0.25 0.25 

Table 1.   SIM Market Prices and Probabilities 

D. UTILITY 

1. Time Separable Utility 

 A time separable utility function explains behavior in which utility derived 

from current consumption does not depend on consumption in the previous 

period.   Utility in each time period is calculated independently without prior 

knowledge of previous consumption.  Expected utility for the entire investment 

plan is calculated by summing utility in each time and state weighted by 

respective probabilities.  
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 A standard assumption is that the separable utility function for time t and 

market state s exhibits constant relative risk aversion (CRRA) and is defined as: 

 
1

,
, ,

( )
( )    

1-

tg
t t s

t s t s
t

a C
U C

g

−

=  (1) 

   
         

The parameters of this utility function are denoted as: 

 

,t sC   consumption in state s at time t 

ta    time discount factor at period t 
  (represents retiree’s time preference relative to consumption   
  sooner than later) 
 

tg   risk aversion coefficient for time period t 
  (represents the retiree’s propensity to accept risk in order to   
  increase expected return) 
 

2. Habit Formation Utility 
 Habit formation represents the propensity of the retiree to value 

consumption at time t relative to consumption at time t - 1.  Watson (2008) adds a 

third parameter td  to the constant relative risk aversion time separable utility 

function to account for habit formation in any given period.  The habit formation 

utility function is defined as:  

 

1
, 1, /2

, 1, /2
, , 1, /2

( )
,   if 0 ( , ) 1-

,                                  otherwise

tg
t t s t t s

t s t t s
t s t s t s t

a C d C
C d CU C C g

−
− ⎡ ⎤⎢ ⎥

− ⎡ ⎤⎢ ⎥
− ⎡ ⎤⎢ ⎥

⎧ −
− >⎪

= ⎨
⎪−⎩ ∞

 (2) 

 

where / 2s⎡ ⎤⎢ ⎥  denotes the smallest integer at least as large as / 2s  and 1, /2t sC − ⎡ ⎤⎢ ⎥
 

indicates consumption in the preceding time period and respective market state.  

Utility at time t and market state s depends only on current consumption and 
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previous consumption, ,   t sC  and 1, /2t sC − ⎡ ⎤⎢ ⎥
, and not on consumption in all previous 

times and states.  Note that when 0td = , (2) becomes a constant relative risk 

aversion time separable utility function.  In Chapter III, we use our collected data 

to estimate the parameters on which (2) depends.   

E. MAXIMIZED INTERTEMPORAL DISCOUNTED UTILITY MODEL 
(MIDUM) 

We adopt the model of Watson (2008) [see also Johnson (2009)], which 

we refer to as the Maximized Intertemporal Discounted Utility Model (MIDUM).  In 

Chapter III, we examine MIDUM’s ability to accurately represent the investment 

preferences corresponding to the set of collected data.  MIDUM is defined as:  

Indices 
t   years in retirement, t = 0, 1, 2, …, T 

s   states of the market  

 

Data 

tS    number of states at time t  

,t sπ    probability that state s will occur at time t  

,t sΨ   price in state s and time t 
(amount that can be paid at t = 0 to provide 1 unit of consumption in 
state s and time t) 

0W   initial wealth 

 

The utility aspects of the MIDUM function are defined in terms of parameters that 

affect a retiree’s consumption and investment decisions.  These parameters are 

denoted as follows: 

 

ta    time discount factor at period t 

td   habit formation coefficient at period t 
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tg   risk aversion coefficient for time t 

 
Variables 

,t sC   consumption in state s at time t  

 

Formulation 

 , , , 1, /2
0 1

max ( , )
tST

t s t s t s t s
t s

U C Cπ − ⎡ ⎤⎢ ⎥
= =
∑∑  (3) 

    

 , , 0
0 1

,

 . .

  

  0  ,

tST

t s t s
t s

t s

s t

C W

C t s
= =

Ψ =

≥ ∀

∑∑  (4) 

 Equation (3) represents the objective function, which accounts for total 

expected utility over a retirement plan of length T.  Constraint (4) specifies that all 

initial wealth is used to provide consumption over the same period.   

F. DESIGN OF SURVEY EXPERIMENT 

1. Methodology 

Recall that in order to assemble a portfolio of financial securities that 

maximizes utility one must first possess valid information about the retiree’s 

preferences.  Assuming the retiree fits MIDUM, knowing the value of the 

parameters ta , td  and tg  for t T∈  is synonymous to knowing the retiree’s 

preferences for consumption in the states of the retirement horizon.  In order to 

reveal these preferences we develop and administer a graphical survey that 

requires respondents to make investment choices involving tradeoffs of 

consumption amounts over time and states. 

The survey focuses on the first three years of retirement and the 

respondents use SIM as the market scenario.  In the survey, respondents are 
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told to pretend they are planning the first three years of their retirement.  They 

are asked to generate a three-year retirement investment plan by specifying the 

amount of consumption they would like to receive in each state of SIM.  

Respondents are provided an investment budget.  The investment budget is 

individually tailored and based on information garnered from a demographic 

questionnaire.  The questionnaire asks respondents to evaluate their current 

retirement savings and investment and state how much income they intend to 

have in their first year of retirement.   We refer to this amount as the Expected 

Annual Retirement Income (EARI).  The respondent’s investment budget is given 

as three times EARI.  Respondents are told that for the purpose of the survey, 

they should disregard inflation and think of all consumption in terms of current 

dollars regardless of how far off in the future their actual retirement may be.  To 

complete the survey, respondents use a graphical interface to invest an amount 

of their choice in each of the seven states of SIM.  Investment costs and state 

probabilities are in accordance with those shown in Table 1.   

 In addition to video-based instructions, the following written survey 

instructions are presented to each respondent: 

• In this survey, we are only concerned about the first three years of your 

retirement.  

• The survey will ask you to make a series of investment choices that 

determine how much retirement income you will receive in each of these 

three years. You will have an "investment budget" from which to make 

these investments. 

• The income from these investments is your only source of income during 

these first three years of retirement.  Although retirement may be far off in 

your future, you need not concern yourself with inflation or rising costs of 

living.  For this survey, you can think of all income in terms of current 

dollars. 

• You can assume a simplistic investment market that either "goes up" or 

"goes down" each year. Up- and down-markets are equally likely. 
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• You will start by telling us how much money you will need for year 1 of 

your retirement.  This amount will simply be subtracted from your 

investment budget and given to you as your year-1 retirement income.   

• You will then invest the remainder of your investment budget to 

generate retirement income for year 2 and year 3.   

• You will make two investments to generate year-2 income:  

o an "up-market investment," which provides you with income for year 

2 only if the market goes up in year 1  

o a "down-market investment," which provides you with income for 

year 2 only if the market goes down in year 1.  

• Please note that these investments are different than purchasing a share 

of a company. While a share will typically have some value in both good 

and bad times, your "up-market investment" only has value if the market 

goes up and the "down-market investment" only has value if the market 

goes down.  

• You will make four investments to generate year-3 income: 

o an "up-up-market investment," which provides you with income for 

year 3 only if the market goes up in year 1 and up again in year 2  

o an "up-down-market investment," which provides you with income 

for year 3 only if the market goes up in year 1 and down in year 2  

o a "down-up-market investment," which provides you with income for 

year 3 only if the market goes down in year 1 and up in year 2  

o a "down-down-market investment," which provides you with income 

for year 3 only if the market goes down in year 1 and down again in 

year 2.  
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• Again, these investments will only have a value if the stated market 

condition takes place. 

Figure 3 is a screen shot of the survey interface at initial conditions.  In 

total there are seven boxes each corresponding to one of the possible conditions 

of SIM.   Each box can be moved up and down with the mouse indicating how 

much income the respondent desires in the corresponding time period and state.  

The blue box labeled “Year 1 Income” represents income desired by the 

respondent in year 1 of retirement.  The remaining green and red boxes are 

labeled with respect to their time period and state.  Notice that some boxes in 

retirement years 2 and 3 have dashed borders while some have solid borders.  

The border of the box identifies the corresponding path taken to arrive at a given 

state in retirement year 3.  Dashed borders indicate that the market was down in 

year 2.  As such, the boxes corresponding to states year 3 “du” and “dd” also 

have dashed borders.   

 

 

Figure 3.   Survey GUI – Initial Conditions 
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 Inside each box, we find information corresponding to investment costs, 

total amount invested and contingent income generated from the respective 

investment.  Figure 4 explains the data inside the boxes in detail. 

 

 

Investment Market Condition
This investment represents the 
case where the market goes up in 
year 1.  

The investment provides year-2 
income if the market goes up in 
year 1.

Total Investment Cost
(current dollars, rounded to nearest 

thousand)
Total investment cost required to 
produce $81,000 of year-2 income if 
the market goes up in year 1. 

$81,000  x  $0.33 = $26,730
~ $27,000 

Income
(current dollars, rounded to 

nearest thousand)
The total amount of year-2 income 
you will receive if the market goes 
up in year 1.

Investment Cost
For every $0.33 that you invest 
today you will receive $1 in year 2 
if the market goes up in year 1. 

Solid vs. Dashed Borders
Solid borders represents cases where the 
market goes up in year 1 while dashed 
borders represent cases where the market 
goes down in year 1.

 

Figure 4.   Prices, Investment Cost & Income 

Figure 5 is an example of a completed survey, which represents a three-

year retirement investment plan.  Notice that the investment budget (top left 

corner of graphic) shows $0 remaining indicating that the respondent has 

invested his entire initial wealth.  Each box indicates the respective state-

dependent consumption and how much was invested to generate it.  Table 2 

details the income a retiree would receive during the first three years of his 

retirement given the example three-year retirement plan shown in Figure 5.  
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Figure 5.   Example of a Completed Survey 

 

Year 1 Income Year 2 Income Year 3 Income 
$82k if market up in year 1 

and up in year 2, or $77k if the market goes 
up in year 1, or $63k if market up in year 1 

and down in year 2, or 
$81k if market down in 

year 1 and up in year 2, or

$65k 
$61k if the market goes 

down in year 1 
 $61k if market down in 

year 1 and down in year 2 
Table 2.   Example Incomes During First Three Years in Retirement 

Two sets of surveys were administered, a web-based anonymous survey 

and a control-group survey.  At the completion of the survey experiment we 

capture and include in a database demographic information, the respondent’s 

expected annual income upon retirement (EARI) and the respondent’s desired 

consumption (7 data points corresponding to income specified at each possible 

state of SIM). 
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2. Web-based Anonymous Survey 

 Invitation to complete the web-based anonymous survey was sent via 

email to general acquaintances of the author and signatories of this thesis.  

Although we received a well-dispersed sample of respondents with regards to 

age and income, we do not claim any statistical representation of any general 

population.  We do assert that the variety of respondents is sufficient to examine 

the validity of MIDUM and the applicability of our parameter estimation 

techniques.  Analysis of the survey data is presented in Chapter III.  The link to 

the survey remains active at:  

http://faculty.nps.edu/joroyset/gonzalez/exp1/index.htm 

3. Control-group Survey 

To verify the validity of web-based anonymous survey data, we conducted 

a control-group survey.  The control-group survey took place in a classroom 

environment (computer lab) at the Naval Postgraduate School.  Instructions were 

delivered in person via power point presentation.  Prior to beginning the survey, 

subjects are given the opportunity to ask questions to clarify any aspect of the 

survey instructions.  Additionally, while the instructions are being presented, 

subjects are periodically quizzed to emphasize the critical segments of the 

instruction set.  Respondents complete the survey utilizing the same graphical 

interface used in the web-based anonymous survey with one exception that is 

discussed next. 

Prior to submitting their final plan, control-group subjects are shown two 

alternate plans that are automatically generated by the web browser.   After 

reviewing all three plans, each subject is allowed to submit the one he likes best.  

Upon completion, subjects are interviewed to ascertain how well they understood 

the instructions and to gain knowledge about the reasoning they used to develop 

their retirement plan.  In total, 32 control-group surveys were administered.   
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Analysis of the data is presented in Chapter III.  The link to the control-group 

survey remains active at:   

http://faculty.nps.edu/joroyset/gonzalez/exp1/control/index.htm.    

The audio portion of instructions that we presented was recorded and 

digitized.  A link to the audio files will be provided upon request. 
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III. DATA ANALYSIS 

A. CHAPTER OVERVIEW 

The first section of this chapter provides an overview of data received from 

the survey.  Next, we present predominant strategies used by respondents to 

develop their three-year retirement plan.  We then investigate the data from the 

perspective of expected value to ascertain the average worth of retirement plans 

generated by respondents.  Midpoint in the chapter we discuss analytical 

estimators for habit formation and risk aversion.  We then analyze risk aversion 

variance to show how individual risk aversion preferences depend on time and 

state and vary from person to person.  Inverse optimization methods for 

parameter estimation are then developed and the results are discussed.  The last 

section of this chapter provides a preliminary look at optimal portfolio 

construction and asset allocation. 

B. SURVEY DATA SUMMARY 

In total, we received 175 surveys of which 155 are considered valid.  We 

invalidated a survey when data includes a state with zero consumption and/or a 

state in which consumption is ten times greater than the minimum consumption 

over all states.  Responses of this nature clearly indicate that the respondent 

could not have possibly understood the survey instructions.  The percentage 

breakdown between web-based and control-group surveys is shown in Figure 6.  

Figure 7 presents the percentage of valid and invalid surveys by type. 
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Web, 143, 82%

Control, 32, 
18%

 

Figure 6.   Completed Surveys by Type 
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Figure 7.   Valid & Invalid Surveys 

 
 Figures 8, 9, and 10 summarize demographic data for the 155 valid 

surveys.  Demographic data includes age, gender and expected annual 

retirement income (EARI).  Additionally, Figures 8, 9 and 10 compare survey 

demographics to the demographics of the United States population.  We find 
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that, in our survey, the age demographic is generally consistent with the age 

breakdown of the U.S. population.  Females and the lower income bracket are 

underrepresented in the survey.  We do not draw any statistical significance from 

our data other than to say that the analysis of applicability and validity of 

estimation methods and MIDUM is based on data from a variety of ages and 

incomes. 
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Figure 8.   Age Demographics – 155 Valid Surveys Compared to U.S. Population 
(2006, age 20+) 
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Figure 9.   Gender Demographics – 155 Valid Surveys Compared to U.S. 
Population (2006, age 20+) 
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Figure 10.   EARI Demographics – 155 Valid Surveys Compared to U.S. 
Population (2006, age 20+) 



 23

C. INVESTMENT STRATEGY TRENDS 

 We examine survey data to ascertain whether respondents utilize any 

specific patterns to develop their three-year retirement plan and identify two 

general strategies.   We call the first the “Ratchet,” and the second the “Low 

Risk” strategy. 

1. Ratchet Strategy  

 The “Ratchet” strategy is characterized by locking in a minimum level of 

consumption for each of the three years and using the remaining investment 

budget to provide “extra” consumption.  The consumption floor is set using nowC , 

dC  and ddC .  Consumption in all other states lies above the specified floor.  

Figure 11 provides a graphical representation of a ratchet strategy. 
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Figure 11.   Example of Ratchet Strategy with Consumption Floor Specified by 
nowC , dC  and ddC  
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 We notice that the extent to which respondents exhibit ratchet behavior 

varies, more specifically, respondents accept variation within the floor.  Floor 

variation is defined as the maximum deviation amongst nowC , dC  and ddC .  We 

examine the occurrence of ratcheting given four levels of floor variations, 1%, 

3%, 5% and 10%.  Figure 12 illustrates the number of respondents that display 

ratcheting given the various levels of floor variation.  The numbers shown in the 

chart are cumulative. 
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Figure 12.   Cumulative Number of Respondents Utilizing Ratchet Strategy (155 
surveys) 

2. Low Risk Strategy  

 We call the second strategy the “low risk” strategy.  It is characterized by 

setting a consumption band across the three-year retirement horizon.  

Regardless of which state is realized, consumption lies within the specified band.  

As such, there is little risk that consumption will be less than the minimum 

specified by the floor of the band.  Similarly, there is little possibility of 

consumption above the specified spending band.  The ceiling and floor of the 
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band is given as the maximum and minimum of consumption values, 

respectively.  Figure 13 provides an example of a low risk strategy. 

Consumption Band denoted by Dashed Lines
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Figure 13.   Example of Low Risk Strategy with Consumption Floor Specified by 
nowC , dC  and ddC  

    The number of respondents employing the low risk strategy varies with the 

width (variation) of the consumption band.  Figure 14 shows the cumulative 

number of respondents that utilize the strategy given a 1%, 3%, 5% and 10% 

consumption band. 
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Figure 14.   Respondents Utilizing Low Risk Strategy (155 Surveys) 

Table 3 presents the occurrence of ratcheting and low risk strategies in 

terms of percentage of total respondents.  The numbers shown in the table are 

cumulative and increase as the floor/band widens.   

 

155 valid 

surveys 
1% floor/band 3% floor/band 5% floor/band 

10% 

floor/band 

Ratchet 1% 3% 5% 6% 

No Risk 5% 8% 10% 17% 

Table 3.   Strategy Trends as Percentage of Valid Surveys 

At a floor/band level of 10%, 23% of all survey respondents employ either 

strategy.  We have not yet ruled out that some of these respondents may have 

time separable utility functions, possibly CRRA.  Thus, we do not know whether 

the respondents highlighted in Table 3 adopt the respective strategies out of 

happenstance, or out of intent.  
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D. EXPECTED VALUE PERSPECTIVE 

Anyone planning a retirement has the option of simply investing his or her 

wealth in an interest-earning cash-equivalent, thereby removing any market risk.  

We compare the expected value return of the plans generated by respondents to 

the risk free rate of return.  We want to know whether respondents, on the 

average, develop plans with expected value returns that are better or worse than 

having kept initial wealth in a riskless asset for consumption over the first three 

years of retirement. 

We find that 141 of the 155 respondents created strategies with expected 

value greater than 2% (the given return of our riskless asset).  The highest 

expected value return of any plan yields 30%, the lowest -1.0%, the average 

5.7% and the median 4.7%.  Figure 15 shows the distribution of expected value 

return for all valid surveys. 
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Figure 15.   Expected Value Return (155 Surveys) 

 Figure 16 is a representation of a respondent generated retirement plan 

that produces a high expected value return.  Note that in order to produce a high 

percentage return, the respondent had to set a spending floor well below his 
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stated EARI.  This implies that the respondent is willing to consume significantly 

less than his stated expected annual retirement income if the market trends down 

during the retirement horizon. 
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Figure 16.   Example of Retirement Plan with High Percentage Expected Value 
above Initial Wealth with Corresponding EARI of $65,000 

We find that plans with expected value returns closer to the average plan 

(5.7% average return) do not exhibit this characteristic.  In general, respondents 

developed three types of retirement plans, which we categorize by expected 

value return as such: low (<4.7%), mid (4.7% to 6.7%) and high (>6.7%).  In 

developing plans with low returns, respondents were able to maintain an average 

of downside consumption values nowC , dC  and ddC  that is within 3% of EARI.  For 

mid-return plans, average downside consumption was typically within 5% and for 

high return plans within 15%.  
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E. ANALYTICAL PARAMETER ESTIMATION TECHNIQUES 

In this section, we develop analytical methods for estimating habit 

formation td  and risk aversion tg  preference parameters.  Applicability, 

limitations and special cases of these estimators are presented below.  

1. Habit Formation Coefficient “d” 

Using MIDUM first-order necessary optimality conditions and consumption 

given by the respondent, Watson (2008) develops a technique for analytically 

estimating habit formation.  The derivation of Watson’s analytical estimator for 

habit formation requires that two distinct market paths end at time t with the same 

market state.  For SIM this condition occurs at 2t =  with states “ud” and “du.” 

The market path to arrive at either state is unique.  To arrive at “ud” the market 

must go up in year 1 then down in year 2.  To arrive at “du” the market must go 

down in year 1 and up in year two.  Recall, however, that the price for either 

investment is the same.  Thus, at 2t =  we consider “ud” and “du” identical market 

states, arrived at by distinct paths.  The ratio of consumption differences in states 

“ud” and “du” and states “u” and “d” gives us information regarding the 

respondent’s propensity for habit formation.  Until the model has sufficient 

information (which happens at 2t ≥ ) the estimator cannot be formed.   

The habit formation estimator developed by Watson (2008) for SIM is 

given by the following formula: 

 2
ˆ ud du

u d

C Cd
C C

−
=

−
 (5) 

             

Notice that (5) is valid only when u dC C≠ .  Additionally, the estimator 

becomes zero when ud duC C= .  As explained previously, this estimation method 

cannot be used to estimate habit formation parameters for retirement years 1 and 

2 ( 0d  and 1d  respectively). 
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Analysis of the survey data reveals an unexpected result with regards to 

habit formation.  Prior to the experiment we assumed that individuals would 

behave in a manner consistent with ˆ 0td ≥ .  Instead, we found that a large 

percentage of respondents (70%) behaved in a manner consistent with ˆ 0td < , a 

condition we refer to as “negative habit formation.”  We provide a graphical 

example of negative habit formation in Figure 17.   
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Figure 17.   Example of Negative Habit Formation 

For SIM, negative habit formation estimated by (5) can be manifested 

either by setting d uC C>  or by setting du udC C> .  In the survey, we restrict the 

respondent’s ability to set d uC C>  for the following reason.  Given that it costs 

more to invest in a down market, and that the probability of up and down markets 

is equal, it does not make economic sense to set d uC C>  since the same 

investment result can be obtained for less investment cost by setting u dC C> .   

To reinforce pricing concepts we design the web-browser graphical interface 

such that respondents cannot develop retirement plans with d uC C> .  Thus, for 

our survey, negative habit formation can only be manifested when a respondent 

sets du udC C> .  
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Recall that the prices for udC  and duC  are identical.  Hence, the only 

characteristic that differentiates one investment from another is the market path, 

in this case consumption in 1t = .  A person who exhibits positive habit formation 

desires more income after a higher level of consumption obtained in an up 

market than after a lower level of consumption obtained in a down market, a 

notion that is both intuitive and consistent with some models of rational economic 

behavior.  Conversely, a person who exhibits negative habit formation desires 

less income following a high level of consumption in an up market and more 

income following a low level of consumption in a down market. Further 

implications of negative habit formation are discussed in Chapter IV. 

We categorize habit formation by survey type in Figure 18.   Recall that 

when subjects complete the control group survey we present them with two 

alternative consumption plans.  We design the alternative plans such that the 

respondent has the opportunity to see and ponder a positive habit formation plan, 

a negative habit formation plan and a time separable plan.  The browser 

automatically generates the two plans that are exclusive of the respondent’s 

originally chosen plan.   

After viewing the alternatives, subjects submit the plan they like best.  Out 

of 32 control-group surveys, four respondents chose to switch from their original 

plan to one of the alternative plans presented to them by the survey graphical 

user interface.  This indicates that respondents are generally satisfied with the 

plan they originally create.  A single respondent switched from negative to 

positive habit formation, and three switched from negative to zero habit 

formation.  The category “Control Pre-Switch” in Figure 18 refers to the initial 

surveys produced by the respondents, prior to viewing and selecting from 

alternate retirement plans. “N/A” in Figure 18 signifies a zero denominator in (5).  

We tally special cases that include both a zero denominator and the condition 

du udC C>  as negative habit formation. 
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Figure 18.   Habit Formation by Survey Type 

a. Consistency of Negative Habit Formation Across Web-
based Anonymous and Control-group Surveys 

We administer a control-group survey for two reasons.  First, we 

need to ascertain whether respondents understood the web-based instructions.  

Second, we want to know if bias, in any fashion, is introduced by the web-based 

instructions.  The potential for bias became a concern after observing a large 

percentage of respondents exhibiting a preference for negative habit formation.  

In order to test for indications of bias we compare the proportional occurrence of 

the various types of habit formation estimated by (5) across both survey types 

(see Figure 18).  It is apparent that the percentage of positive habit formation is 

consistent across both surveys.  In the control-group survey we see more 

occurrences of time separable preference (zero habit formation).  The pattern is  
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the same for the control pre-switch results, albeit to a lesser extent.  The 

preference for negative habit formation decreases in control-group surveys; we 

examine reasons for this next.   

At completion of the control-group survey we interview respondents 

to learn about the thought process used in developing their respective retirement 

plan.  As part of the interview, subjects are asked a series of questions including 

three standardized question.  The standardized questions and associated 

aggregated results are summarized in Table 4.  

  
Question 1:  How well did you understand the survey instructions? 

Thoroughly Understood Generally Understood Did Not Understand 

29% 71% 0% 

Question 2:   How strongly do you feel about the income choices you made in the survey? 
 
Response 1:  I would be upset if my retirement income was off by more than 5% 

Response 2:  I would be satisfied if my retirement income was within 10% of what I specified 

Response 3:  I would be satisfied if my retirement income was within 20% of what I specified 
Response 1 Response 2 Response 3 

17% 54% 29% 

Question 3:  While taking the survey did you keep in mind that the Up-Down & Down-Up 

investments cost the same? 

Yes No 

46% 54% 

Table 4.   Summary of Control-Group Survey Questionnaire 

We focus on questions one and three.  Based on question one, 

respondents clearly elucidate they understand the survey and the tasks they 

were asked to perform (we must keep in mind claiming to understand does not 

necessarily mean the respondent actually understood).  Question 3 is intended to 

provide insight regarding the rationale behind a negative habit formation 

preference.   We are interested to know if respondents consider the equal pricing 

of udC  and duC  when selecting 2t =  consumption.  If respondents are conscious 
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of the prices, it stands to reason that their preference for negative habit formation 

is indeed an informed decision.  In total, we interview 23 control-group subjects.  

Analysis of the interview data revealed that 10 of 23 (43%) claimed to be 

cognizant of the prices while constructing their three year investment plan.  

Amongst those that were cognizant of the prices, three exhibited 

negative habit formation.  Based on the small sample claiming cognizance of 

prices there is no way of knowing whether negative habit formation for these 

cases is deliberate or simply coincidence. 

To develop further insight regarding negative habit formation 

respondents are also asked to answer the following question:   

Refer to the conditions Up-Down & Down-Up.  Please elaborate on 
the income you specified for these conditions.  Is there any reason 
why you chose more or less income for either condition? 

We categorize responses to this question as follows.  Some 

respondents indicate that their main intention is to “average out” consumption 

over the three years by specifying more consumption following a down market 

year.  Other respondents suffer from the Monte Carlo fallacy and state that if the 

market is down in any given year it is more likely to go up the next; hence they 

allocate more consumption to states that succeed a down market.  Finally, some 

respondents intimate they prefer negative habit formation for no particular 

reason, it simply “felt good” or “looked right.”  In general, we could not extract a 

clear reason for negative habit formation from exit interview questions. 

Once again referring to Figure 18, we see that the tally of negative 

habit formation in the control-group survey is lower than in the web-based 

survey.  We attribute this mainly to the focus we place on equal pricing of udC  
and duC  during the classroom delivery of control-group instructions.  Although 

state prices are discussed in the web-based instructions, they may not have 

been emphasized as well.  Additionally, in the control-group, respondents are 

given the ability to switch from original plans to alternate plans, a choice that is 
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not available in the web-based survey.  Despite these differences, we observe 

significant numbers of respondents in both surveys who choose consumption 

plans exhibiting negative habit formation.   

2. The Slope Method for Estimating Risk Aversion 

We utilize a graphical slope method for estimating risk aversion (Sharpe 

2007a).  This method provides three independent risk aversion parameter 

estimates.  One is formed at 1t =  from uC  and dC , and two others are formed at  

2t =  from uuC  and udC , and duC  and ddC .   

The estimates are formed by plotting the logarithm of PPC (“Price Per 

Chance” is defined as state price divided by the state probability) against the 

logarithm of consumption as shown in Figure 20.  The negative of the slope of 

each line shown in Figure 20 is the estimate for risk aversion.  The slope method 

fails when the slope of log (PPC) plotted against log (consumption) is not defined 

because the two consumption amounts are the same, despite the differences in 

their price per chance values.  This condition is interpreted as infinite risk 

aversion.  Out of 155 valid surveys, we successfully estimate risk aversion for 

111 cases using the slope method; the remaining cases are classified as infinite 

risk aversion. 
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Figure 19.   Slope Estimation Method 

For completeness, we offer the following derivation of the slope estimation 

method.  We utilize MIDUM, time separable and CRRA and derive an estimate 

for risk aversion after the first year in retirement ( 1g ) as depicted in Figure 20. 

Slope = g1

cd

cuLog (PPC)

Log (C)

Cnow

Cu

Cd

 

Figure 20.   Derivation of Risk Aversion Slope Estimation Method (MIDUM, Time-
Separable and CRRA) 
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We take as given that through data collection we have the optimal solution 

to MIDUM and that first-order necessary optimality conditions are satisfied.  We 

use these conditions to calculate a slope. 

The first-order conditions for states uC  and dC  are as follows: 

 1
1 0g

u u ua Cπ λψ− − =  (6) 
 
 1

1 0g
d d da Cπ λψ− − =  (7)  

 

Without loss of generality we assume 1 1a = . 

Using (6) we solve for the Lagrange multiplier  

 ( ) gu
u

u

Cπλ
ψ

−=  (8) 

           

Next we take logarithms and rearrange (8) to get  

 log( ) log logu
u

u

g Cψ λ
π

= − −  (9) 

which provides log( )u

u

ψ
π  

as an affine function of log uC , with –g as slope and 

log λ−  as intercept.  

When 2t ≥  the slope method provides multiple risk aversion estimates.   

For example, at 2t =  the slope method provides an estimate for 2( )upg  and 2( )downg  

(see Figure 21).  Note that the slope method is not able to form a risk aversion 

estimate when 0t = . 
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Figure 21.   Disparate Risk Aversion, Same Time Period 

Our data revealed that all 155 surveys produced different estimates for 

2( )upg  and 2( )downg  indicating the presence of a significant amount of risk aversion 

variance both amongst and across respondents.  In the next section, we describe 

the risk aversion variance associated with our data and discuss its interpretation.   

F. TIME AND STATE RISK AVERSION 

First, we focus on time and state risk aversion as it applies to individual 

respondents.  For each of the 111 respondents estimated with the slope method 

we plot  2( )upg  on the y-axis and 2( )downg  on the x-axis of Figure 22.  A 45-degree 

line is superimposed to indicate when 2( ) 2( )up downg g= .  Figure 22 clearly shows 

that people have different risk aversions after an up market than after a down 

market, i.e., risk aversion for a given individual is time and state dependent.  This 

result indicates that respondents of our survey are generally not consistent with 

time-separable CRRA utility. 
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Figure 22.   Plot of 2t =  Slope Estimate Components, 111 Respondents 

 
Next, we address risk aversion variance across respondents.  We begin 

by calculating the average and standard deviation of the 1 2( ), upg g  and 2( )downg  for 

each respondent.  In Figure 23, we plot these values against each other to 

summarize how risk aversion preference varies from person to person.  In 

general, we see that our survey respondents exhibit a wide variety of risk 

aversion preferences.  This result highlights the difficulty in describing all 

respondent behavior with a single utility function model. 
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Figure 23.   Standard Deviation vs. Average of 1 2( ), upg g  and  2( )downg  estimates, 111 
Respondents 

G. INVERSE OPTIMIZATION ESTIMATION TECHNIQUES 

Recall that this thesis aims to develop estimates for MIDUM parameters, 

specifically, 
1 2 0 1 2 0 1 2, , , , , , ,a a g g g d d d .  Analytical methods examined thus far fall 

short; habit formation can only be estimated when 2t ≥ , risk aversion can only be 

estimated when 1t ≥ , and when 2t ≥  we arrive at multiple estimates for risk 

aversion.  For these reasons, we conclude that in general analytical methods are 

not suitable for concisely estimating MIDUM parameters.  We now look to 

numerical methods. 

Assuming a respondent fits the MIDUM model then the consumption data 

provided by his or her survey is precisely the optimal solution of MIDUM. With the 

solution to MIDUM in hand, inverse optimization is used to quantify and estimate 

respondent preference.  If the respondent does not fit MIDUM, the inverse 

optimization will fail and sufficiently accurate estimates of the preference 

parameters will not materialize.  A specialization of MIDUM that represents the 

first three years of retirement is given as: 
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( ) ( ) ( )

( ) ( )

( ) ( )
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u d
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0. .

        , , , , , , 0

now u u d d uu uu ud ud du du uu uu

now u d uu ud du dd

s t W C C C C C C C

C C C C C C C

ψ ψ ψ ψ ψ ψ= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

≥
   

 

The corresponding first order necessary optimality conditions are as follows: 

 
0 1 1

0 * 1 1 1 1 1 1     ( ) ( ) ( ) ( ) ( )g g g
now now u u now d d nowC C d C a C d C d a C d C dπ π λ− − −− + − − + − − =  (11) 

  
1 2 2

1 1 2 2 2 2 2 2     ( ) ( ) ( ) ( ) ( )g g g
u u u now uu uu u ud ud u uC a C d C a C d C d a C d C dπ π π λψ− − −− + − − + − − =  

  (12) 
 
 

1 2 2
1 1 2 2 2 2 2 2     ( ) ( ) ( ) ( ) ( )g g g

d d d now du du d dd dd d dC a C d C a C d C d a C d C dπ π π λψ− − −− + − − + − − =
  (13) 
 

2
2 2    ( ) g

uu uu uu u uuC a C d Cπ λψ−− =   (14) 
 

2
2 2    ( ) g

ud ud ud u udC a C d Cπ λψ−− =   (15) 
 

2
2 2    ( ) g

du du du d duC a C d Cπ λψ−− =   (16) 
 

2
2 2    ( ) g

dd dd dd d ddC a C d Cπ λψ−− =   (17) 
 

0 0     now u u d d uu uu ud ud du du dd ddW W C C C C C C Cψ ψ ψ ψ ψ ψ= + + + + + +  (18) 
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Data from the survey specify , , , , , ,now u d uu ud du ddC C C C C C C .  The spending 

anchor *C  is calculated such that nowC  is 85% of *C  based on the notion that 

consumption in the first year of retirement is 15% less than pre-retirement 

consumption.  Since , , , , , ,now u d uu ud du ddC C C C C C C  is considered the optimal solution 

to (10) the first order necessary optimality conditions (11) through (18) are 

satisfied.   Hence, it would be natural to attempt use nonlinear regression to fit 

parameters 
1 2 0 1 2 0 1 2, , , , , , ,a a g g g d d d  such that the square error in satisfying (11)-

(18) is minimized.   However, we find the resulting least-square problem to be 

extremely ill-conditioned and instead adopt an alternative approach described 

next.  

Given a set of parameters 
1 2 0 1 2 0 1 2, , , , , , ,a a g g g d d d , a nonlinear 

programming algorithm can determine a near-optimal consumption in (10) quickly 

as it is a small convex nonlinear program. We utilize this fact and optimize 

1 2 0 1 2 0 1 2, , , , , , ,a a g g g d d d  using random search with the goal of minimizing the 

“distance” between the consumption specified by the respondent and the (near-) 

optimal consumption found from solving (10) for a given set of parameters.   This 

is a bi-level optimization problem, which we call the Bi-Level Inverse Optimization 

Model (BIOM): 
 

Indices 
t first three years in retirement, t = 0,1,2 

 
Data 

Ĉ  consumption vector specified by the respondent  

 ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,now u d uu ud du ddC C C C C C C  )  

Variables 

1 2 0 1 2 0 1 2, , , , , , ,a a g g g d d d  respondent preference parameters  
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Functions 
*

1 2 0 1 2 0 1 2

ˆ
( , , , , , , , ) ˆ

C CD a a g g g d d d
C∞

∞

−
=   (19) 

        

where * * * * * * ** ( , , , , , , )now u d uu ud du ddC C C C C C CC =  is the optimal consumption vector of (10) 

given 
1 2 0 1 2 0 1 2, , , , , , ,a a g g g d d d  

 
Formulation 

1 2 0 1 2 0 1 2min ( , , , , , , , )D a a g g g d d d∞   

s.t.  

0.97t
ta =           (20) 

(0,1)td ∈   for data classified as positive habit formation   (21) 

( 1,1)td ∈ −   for data classified as negative habit formation   (22) 

(2,5)tg ∈
    

      (23) 

 

 Equation (19) represents the objective function, it indicates the maximum 

percentage difference between components of *C and Ĉ .   

We use (5) to classify data from the 155 respondents into three 

categories: “positive habit formation,” “negative habit formation” and “n/a.”   

For each category, we solve BIOM by random search with MINOS as the 

solver to determine *C  (Murtagh and Saunders 1998). MINOS is run with 

General Algebraic Modeling System (GAMS), Build 22.8.1 (Rosenthal 2008).  

Random search is known to be inefficient, but our goal is not efficiency – the 

random search technique is simple to implement and suffices for our purposes.  

For each iteration of BIOM we choose (21)-(23) from a uniform random 

distribution. 

The stopping criterion for random search is 5000 iterations.  We select the 

10% criteria because it corresponds to information provided by respondents in 
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the exit surveys (see Question 2 in Table 4).  Namely, 83% of subjects 

interviewed state they are satisfied with a retirement plan that provides actual 

income within 10% of what they had specified in their plan.  We refer to an 

optimization that reaches an objective function value less than or equal to 0.1 

with 5000 iterations as a “good” estimate and take this estimate to be an 

adequate numerical fit to MIDUM.  An example of a “good” (within 10%) estimate 

is provided in Table 5.   

 

Respondent ID: 162 

0Ĉ  ˆ
uC  ˆ

dC  ˆ
ddC  ˆ

duC  ˆ
udC  ˆ

uuC  

69 65 67 63 65 65 65 
*
0C  *

uC  *
dC  *

ddC  *
duC  *

udC  *
uuC  

69.42 65.15 65.36 63.8 64.04 64.25 64.53 

1 2 0 1 2 0 1 2min ( , , , , , , , )D A A g g g d d d∞  = 0.02 

Best Parameter Estimate 

1a  2a  0d  1d  2d  0g  1g  2g  

0.97 0.94 0.9 0.92 0.96 2.94 3.87 3.76 

Table 5.   Example of Parameter Estimation from Bi-Level Random-Search 
Optimization 

If the parameter estimates given by this example were used to develop an 

investment portfolio the resulting state consumption would not vary more than 

2% from that stated by the respondent. 

Table 6 summarizes the results of estimates conducted at 5,000 iterations 

and shows the number of respondents that were successfully fit to MIDUM.  We 

notice immediately that a comparatively smaller percentage of negative habit 

formation data is successfully estimated.  To illustrate how many estimates were 

fit with strictly positive habit formation parameters we calculate the percentage of 

cases in which 0 1 2
ˆ ˆ ˆ0, 0, 0d d d≥ ≥ ≥ .  These percentages are shown in the 



 45

rightmost column of Table 6.  Importantly, we find that a large percentage (76%) 

of respondents previously categorized as negative habit formation by (5) are now 

categorized as strictly positive habit formation by the random-search numerical 

optimization.  The same can be said for the twenty-two “n/a” cases that 

previously could not be categorized analytically due to a zero denominator in (5).   

 

Data Type Surveys 
# fit to 

MIDUM 

% fit to 

MIDUM 

% fit to MIDUM with 

0 1 2
ˆ ˆ ˆ0, 0, 0d d d≥ ≥ ≥  

Positive habit 

formation 
28 20 71% 100% 

Negative habit 

formation 
105 29 28% 76% 

n/a 22 18 82% 94% 

Total 155 67 43% 88% 

Table 6.   Summary of BIOM Results 

We highlight the degree of accuracy to which the data is estimated for 

each of the three data types in Figures 24, 25 and 26 respectively, and focus on 

Figure 25 to show the fact that negative habit formation data is fit with the least 

amount of accuracy. 
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Figure 24.   Accuracy of “Good” Estimates for Positive Habit Formation 
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Figure 25.   Accuracy of “Good” Estimates for Negative Habit Formation 
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Figure 26.   Accuracy of “Good” Estimates for “n/a” data 

Based on our results we conclude that BIOM is generally sound and that 

relatively precise estimations (good data fit) can be derived from 5,000 iterations 

of random search.  Certainly, more iteration yields higher precision at the cost of 

greater computation and solve time.  A single BIOM solve (5,000-iterations of 

random search) takes approximately fifteen minutes on a standard laptop 

computer.  

Our definition of a “good” estimate, 0.10D∞ ≤  also implies that an estimate 

with 0.10D∞ >  
is a failed estimate.  An estimate failure occurs for two reasons.  

First, the individual being analyzed may not fit MIDUM, thus his or her preference 

parameters cannot be quantified within the context of the model.   A second 

reason could be that 5,000 iterations of random search are not sufficient to 

estimate the particular respondent in question.  In order to further examine the 

reasons behind failed estimates, we use BIOM on a subset of the data with 

25,000 iterations vice 5,000 iterations of random search.   

The purpose of our higher iteration run is twofold.  First, we want to 

determine the amount of accuracy gained from a fivefold iteration increase.  We 
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select 45 cases from the original 155 surveys to include the five best estimates, 

the five worst estimates and the five middle estimates from each category of data 

(positive habit formation, negative habit formation and “n/a”).  This subset allows 

us to compare the effects of more iteration across data that spans a wide variety 

of accuracy levels.  The second goal of BIOM at 25,000 iterations is to identify 

subjects that do not fit the MIDUM model.  If we cannot estimate a particular 

respondent to 0.10D∞ ≤  
after 25,000 iterations of random search, it then seems 

reasonable to conclude that the individual does not fit MIDUM. 

Figures 27, 28 and 29 show the percentage change in accuracy resulting 

from 25,000 iterations as compared to 5,000 iterations.  Positive numbers on the 

y-axis indicate a percent reduction in D∞
 and negative numbers represent an 

increase.  Keep in mind that the changes are percentage based.  As such, we do 

not concern ourselves with the increase in D∞
shown in Figure 28.  For these 

three cases, the absolute changes are marginal, from 1% to 2%, which 

corresponds to the 100% change shown in the graph. 
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Figure 27.   Change in D∞
 (Negative Habit Formation Data, 25,000 iterations vs. 

5,000 iterations) 
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Figure 28.   Change in D∞
 (Positive Habit Formation Data, 25,000 iterations vs. 

5,000 iterations) 
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Figure 29.   Change in D∞
 (“n/a,” 25,000 iterations vs. 5,000 iterations) 

 The chosen subset of data includes 19 cases that did not meet 0.10D∞ ≤  

with 5,000 iterations.  After 25,000 iterations, four of the 19 cases are minimized 

to 0.10D∞ ≤ .  This leaves 15 cases that could not be sufficiently minimized.  We 

conclude that these cases do not fit MIDUM.  Additionally we notice that ten of 
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the 45 estimates result in habit formation parameter sign changes from strictly 

positive to one or more habit formation parameters with negative signs.  Given 

that the data was originally classified analytically as positive, this result indicates 

that analytical estimators are prone to misclassification.  Table 7 summarizes and 

compares the results of BIOM at 5,000 with the results of BIOM at 25,000 

iterations. 

 

Iterations # fit to 

MIDUM with 

0.10D∞ ≤  

% fit to 

MIDUM with 

0.10D∞ ≤  

# fit to MIDUM 

with 

0 1 2
ˆ ˆ ˆ0, 0, 0d d d≥ ≥ ≥

% fit to MIDUM with 

0 1 2
ˆ ˆ ˆ0, 0, 0d d d≥ ≥ ≥  

5,000 67/155 43% 59/67 88% 

25,000 29/45 64% 22/29 76% 

Table 7.   Comparison of BIOM 25,000 and 5,000 Iteration Results  

H. A PRELIMINARILY LOOK AT PORTFOLIO COMPOSITION 
In this section, we use the near-optimal consumption results of BIOM to 

develop efficient investment portfolios for various combinations of habit formation 

and risk aversion, namely negative habit formation with high and low risk 

aversion and positive habit formation with high and low risk aversion.  The 

portfolios presented here are not meant to be inclusive or representative for all 

individuals who fall into the four stated combinations of risk aversion and habit 

formation.  Instead, they are meant to draw a general asset allocation 

comparison between optimal portfolios at the extremes.   

Furthermore, the portfolio examples shown here serve to illustrate the 

general concept and end state of this thesis – to elicit retirement consumption 

information from respondents, derive a model that quantifies the information and 

returns corresponding preference parameters, use the parameters to maximize 

utility and finally develop an analogous optimal portfolio.  



 51

We develop optimal portfolios in the following manner and represent the 

simplistic investment market with market matrix M  (Sharpe 2007).   

 

1 1 1 0 0 0 0 0
0 1 1 0 0 1,   (d) 
0 0 0 1 1 1,   (u)
0 0 0 0 0 2,  (dd)
0 0 0 0 0 2,  (du)
0 0 0 0 0 2,  (ud)
0 0 0 0 0 2,  (uu)

f d

f u

f d

f u

f d

f u

t
R R t
R R t

R RM t
R R t

R R t
R R t

− − ← =⎡ ⎤
⎢ ⎥− − ← =⎢ ⎥
⎢ ⎥− − ← =
⎢ ⎥

= ← =⎢ ⎥
⎢ ⎥← =
⎢ ⎥

← =⎢ ⎥
⎢ ⎥← =⎣ ⎦

 (24) 

Vector x represents a particular investment plan which corresponds to 

investment in stocks and bonds over the course of the three year simplistic 

investment market retirement horizon. 
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Vector c represents the optimal consumption plan whose components 

correspond to consumption in each state of the simplistic investment market. 
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 In order to produce desired consumption c, investment strategy x is 

invested in market M.  The following relationships hold: 

 Mx c=  (27) 

 

 1x M c−=  (28) 

We use (27) to calculate optimal consumption and (28) to calculate the 

corresponding investment strategy.  After conducting BIOM and obtaining a valid 

estimate for preference parameters we are able to conclude that with such 

parameters a particular respondent fits MIDUM.  Having verified MIDUM fit we 

consider Ĉ  as the optimal consumption vector and apply (28) to calculate the 

corresponding investment strategy.  We present the portfolios developed with 

this process in Figures 30 through 33 and provide the following clarification to the 

graph legend: “Long B” is a long bond position, “Long S” is a long stock position, 

“Shrt B & Long S” is a short bond and long stock position and “Shrt S & Long B” 

is a short stock and long bond position.   

The dollar values of each investment are superimposed on the graph.  We 

use Figure 30 as an example to illustrate net investment and consumption.  We 

see that in state “now” (year 1 of retirement) the respondent invests a total of 

$143k in a long stock position.  Thirty-nine thousand dollars worth of long stock 

position is purchased with proceeds generated from the short bond position.  On 

a net basis, in state “now” the respondent invested $143 and consumed $91k.  

The same methodology can applied to all subsequent states of the portfolio.  In 

general, for our data we see that respondents with less risk aversion tend to fund 

future consumption by using short positions to generate investment capital for 

long positions. 
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Figure 30.   Sample Portfolio, Low Risk Aversion and Negative Habit Formation 
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Figure 31.   Sample Portfolio, High Risk Aversion and Negative Habit Formation 
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Figure 32.   Sample Portfolio, Low Risk Aversion and Positive Habit Formation 
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Figure 33.   Sample Portfolio, High Risk Aversion and Positive Habit Formation 
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IV. CONCLUSION AND RECOMMENDATIONS 

Significant changes in the world’s retirement systems, coupled with the 

graying of the world’s population establish the need for improved retirement 

financial planning.  This thesis explores the concept of applying inverse 

optimization and utility maximization as a method for developing efficient 

retirement plans that are based on retiree investment preferences. 

We design a survey to collect investment preference data for time 

preference, habit formation and risk aversion.  Time preference is associated 

with a retiree’s desire for consumption sooner than later.  Habit formation 

represents the propensity of the retiree to value current year consumption 

relative to previous year consumption.  Risk aversion describes the retiree’s 

acceptance of risk under uncertainty.  In total, we collect 155 valid surveys.  

Demographic data from our survey results indicates that we have a sufficient 

variety of ages and incomes to conduct analysis. 

Next, we implement a constant relative risk aversion (CRRA) habit 

formation utility model and develop analytical methods to quantify, estimate and 

parameterize retiree preference.  A time-separable (CRRA) utility model 

represents behavior in which utility derived from current consumption does not 

depend on previous period consumption.  In contrast, a habit formation CRRA 

utility model represents behavior such that current consumption depends on 

previous consumption.  Analysis of our data clearly reveals a time and state risk 

aversion dependency for the majority of our data.  We infer that in general our 

respondents do not behave in a manner consistent with a time separable CRRA 

model. Thus, adequately representing investor preference requires a different 

model.  As a possible candidate, we develop a habit formation utility model we 

call Maximized Intertemporal Discounted Utility Model (MIDUM).    

We attempt to fit respondent data to MIDUM using a bi-level numerical 

optimization technique that we refer to as Bi-level Inverse Optimization Model 
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(BIOM).  Using BIOM with 5,000 iterations of random search we fit approximately 

half (43%) of the respondents to MIDUM within an acceptable level of error -- 

specifically, a 10% maximum difference from consumption specified by the 

respondent.  We also run BIOM with 25,000 iterations of random search on a 

subset (one-third) of the data and are able to fit 64% of such respondents to 

MIDUM.  Inability to fit the remaining respondents is attributed to the failure of 

MIDUM’s underlying utility function to adequately model respondent behavior.  

This conclusion clearly indicates the need for further work in the area of 

developing utility models with greater scope.   

Our analysis of respondent data reveals an unexpected result, namely that 

a large percentage of respondents make choices consistent with “negative” habit 

formation.  Negative habit formation is manifested when, for a given cost within 

the same time period, an individual desires more consumption following a down 

market and lower consumption state and less consumption following an up 

market and higher consumption state.  We remain unsure about the true 

motivation behind such a preference.  Exit interviews designed to understand 

reasoning leading to such choices were inconclusive.  Various comments in the 

exit interviews suggest that respondents believed they applied logic and rational 

approaches when choosing consumption patterns. However, an equal amount of 

evidence suggests that some respondents did not truly internalize all of the 

survey information regarding investment costs and state probabilities.  In these 

cases, the resulting survey responses may not accurately represent genuine 

investment preferences.  Furthermore, for those that did not fully understand 

prices and probabilities, it is entirely possible that the manifestation of negative 

habit formation is more of an artifact than an intention.  Further research is 

required to ascertain the true motivation behind such choices.  Once the rationale 

for negative habit formation is understood and quantified, a new utility function 

that incorporates said behavior can be formulated.  Techniques similar to those 

presented in this thesis can then be applied to the modified utility function to 

better estimate respondent preference parameters.  
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Certainly more work is needed to develop a survey design that better 

reveals retiree preference.  It may not be feasible to administer a survey of this 

nature (complexity) en masse over the Internet.   The ability to obtain bona fide 

data from respondents may require a direct one-on-one interview with a retiree 

where the advisor can carefully explain details of the survey and receive 

feedback from the respondent.  This feedback can then be used to select and/or 

calibrate utility and estimation models accordingly. 

We believe that the results of this thesis serve as a proof of concept for 

utilizing inverse optimization and utility maximization to develop customized, 

efficient retirement financial plans.  Further research should focus on developing 

a survey that better reveals an investor’s preferences. More work is also needed 

to develop a set of utility functions that more closely model investor behavior. 
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